Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 170: 468-477, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039684

RESUMO

The attention mechanism comes as a new entry point for improving the performance of medical image segmentation. How to reasonably assign weights is a key element of the attention mechanism, and the current popular schemes include the global squeezing and the non-local information interactions using self-attention (SA) operation. However, these approaches over-focus on external features and lack the exploitation of latent features. The global squeezing approach crudely represents the richness of contextual information by the global mean or maximum value, while non-local information interactions focus on the similarity of external features between different regions. Both ignore the fact that the contextual information is presented more in terms of the latent features like the frequency change within the data. To tackle above problems and make proper use of attention mechanisms in medical image segmentation, we propose an external-latent attention collaborative guided image segmentation network, named TransGuider. This network consists of three key components: 1) a latent attention module that uses an improved entropy quantification method to accurately explore and locate the distribution of latent contextual information. 2) an external self-attention module using sparse representation, which can preserve external global contextual information while reducing computational overhead by selecting representative feature description map for SA operation. 3) a multi-attention collaborative module to guide the network to continuously focus on the region of interest, refining the segmentation mask. Our experimental results on several benchmark medical image segmentation datasets show that TransGuider outperforms the state-of-the-art methods, and extensive ablation experiments demonstrate the effectiveness of the proposed components. Our code will be available at https://github.com/chasingone/TransGuider.


Assuntos
Benchmarking , Processamento de Imagem Assistida por Computador , Entropia
2.
Comput Biol Med ; 161: 106932, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230013

RESUMO

Attention mechanism-based medical image segmentation methods have developed rapidly recently. For the attention mechanisms, it is crucial to accurately capture the distribution weights of the effective features contained in the data. To accomplish this task, most attention mechanisms prefer using the global squeezing approach. However, it will lead to a problem of over-focusing on the global most salient effective features of the region of interest, while suppressing the secondary salient ones. Making partial fine-grained features are abandoned directly. To address this issue, we propose to use a multiple-local perception method to aggregate global effective features, and design a fine-grained medical image segmentation network, named FSA-Net. This network consists of two key components: 1) the novel Separable Attention Mechanisms which replace global squeezing with local squeezing to release the suppressed secondary salient effective features. 2) a Multi-Attention Aggregator (MAA) which can fuse multi-level attention to efficiently aggregate task-relevant semantic information. We conduct extensive experimental evaluations on five publicly available medical image segmentation datasets: MoNuSeg, COVID-19-CT100, GlaS, CVC-ClinicDB, ISIC2018, and DRIVE datasets. Experimental results show that FSA-Net outperforms state-of-the-art methods in medical image segmentation.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Semântica , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...